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We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton
Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping
intensity �dependent on the polariton lifetime�, the average polarization degree is close to zero, while above
threshold the condensate acquires a polarization described by a �pseudospin� vector with random orientation, in
general. It is shown that the polariton-polariton interaction leads to suppression of the linear polarization
degree of the condensate due to the self-induced Larmor precession of the pseudospin. We establish the link
between the second-order coherence of the polariton condensate and the distribution function of its polariza-
tion. We examine also the mechanisms of polarization dephasing and relaxation.
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I. INTRODUCTION

Bose-Einstein condensation �BEC� of exciton polaritons
in semiconductor microcavities has recently been demon-
strated experimentally.1–3 It is still important, however, to
establish a reliable and easily accessible experimental crite-
rion for the BEC of polaritons. From the point of view of the
Landau theory of phase transitions,4 BEC requires the build
up of an order parameter physically associated with the mac-
roscopic wave function of the polariton condensate.5 The
phase of the order parameter is chosen by the system under-
going BEC spontaneously and this spontaneous symmetry
breaking6 is considered the “smoking gun” for BEC. The
order-parameter buildup is also accompanied by a decrease
in the second-order coherence parameter g�2��0�. Unfortu-
nately, due to the limited time resolution of the Hanbury-
Brown and Twiss experimental setup, it is very hard to mea-
sure g�2��0� with a good accuracy.7,8

In recent works,9–11 it has been suggested that the buildup
of the order parameter can be evidenced by polarization mea-
surements. Effectively, the polarization degree of light emit-
ted by polariton condensates contains information on the am-
plitudes and relative phases of both components of the spinor
wave function of the condensate. In this paper, we present a
kinetic model of spontaneous formation of the polarization
vector, which accompanies BEC of exciton polaritons in mi-
crocavities under pulsed excitation. We find a correlation be-
tween the polarization degree of light emitted by the micro-
cavity and the second-order coherence of the polariton
condensate and study depolarization of the condensate due to
polariton-polariton interactions.

There have been a number of theoretical works describing
the dynamics of polariton BEC. The approaches most rel-

evant to our problem have been based either on the semiclas-
sical Boltzmann equations describing the energy relaxation
of polaritons but neglecting the phase of the condensate12,13

or on the Gross-Pitaevskii equation and its generalizations,
assuming the existence of a coherent condensate from the
very beginning.14–16 The spin dynamics of exciton polaritons
has been treated within these two approaches as well.10,17

The stochastic classical field model for polariton BEC was
recently presented by Wouters and Savona.18 Their “trun-
cated Wigner” approach allowed calculating the second-
order coherence of the condensate and recovering the Boltz-
mann equations in the low-density limit. The spin of exciton
polaritons has been neglected however. In the recent work of
del Valle et al.,19 the buildup of linear polarization in a po-
lariton BEC has been studied theoretically and experimen-
tally in the presence of pinning. Our present model bridges
the gap between the spin-dependent Boltzmann and spin-
dependent Gross-Pitaevskii equations and allows one to de-
scribe the formation of a coherent polariton condensate from
an incoherent ensemble of polaritons fully accounting for the
polariton spin.

The formation of a polariton condensate is stochastic in
its nature since polaritons entering the condensate have ran-
dom phases and polarizations. Above the stimulation thresh-
old, when the average population of the lowest-energy polar-
iton state exceeds 1, both the stochastic phase and
polarization of the condensate start being amplified and sta-
bilize due to the stimulated scattering of polaritons from an
incoherent reservoir. Polariton interactions with acoustic
phonons and between themselves make the dynamics of the
order-parameter complex and nontrivial since they lead to
dephasing and polarization relaxation.
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These general features of polariton condensate formation
become especially noticeable under conditions of pulsed ex-
citation, and we therefore focus on this regime in this work.
We show that contrary to the case of cw excitation, where the
polariton condensation is manifested by the spontaneous lin-
ear polarization formation,1,2,9,10 the behavior of condensate
polarization during the luminescence pulse is much more
complex and interesting. This behavior is characterized by
the interplay between the effects of polariton-polariton inter-
actions, polarization relaxation, and polarization pinning. As
a result, the condensate can exhibit suppression of linear po-
larization accompanied with the formation of rings in the
circular component in the case when polarization relaxation
is not effective. It is only the presence of effective and fast
relaxation that leads to the suppression of circular polariza-
tion and to the formation of linear polarization as in the cw
excitation case.

In this paper, we consider polariton condensation into one
spin-degenerate-localized state. The generalization of the
present theory to the case of several localized states and, in
particular, the study of the spatial coherence formation that
accompanies the polariton condensation will be given else-
where. Neglecting the spatial degrees of freedom of the con-
densate in this paper is equivalent to the assumption of spa-
tial coherence across the whole condensate. This is indeed
the case in spatially confined systems, such as micropillars,20

and is likely to be a feature of localized condensates in pla-
nar microcavities, as soon as the polariton lasing threshold is
overcome.11 We underline that while spatial coherence is an
experimentally demonstrated feature1 of BEC, it is not a suf-
ficient condition or unambiguous signature. A simple argu-
ment is that spatial coherence has been observed in the mi-
crocavity optical parametric oscillator.21–23 In this case, the
spatial coherence is transferred from the laser excitation to
the polariton field, but there is no spontaneous symmetry
breaking or BEC.

For a localized condensate, the impact of the polariton-
polariton interaction on the polarization dynamics depends
on the localization radius: the larger the area occupied by the
condensate the smaller the interaction effects for a fixed total
number of polaritons. So, in reality one can have the case
when polariton-polariton interaction effects strongly domi-
nate the relaxation and dephasing effects �for strongly local-
ized condensates� or the opposite case �for large localization
radii�. In Sec. II we present the theoretical formalism; in Sec.
III we will present the results on the dynamics of polariton
condensate pseudospin for the case when spin relaxation is
negligible, but the polariton-polariton interactions are taken
into account. Then in Sec. IV we consider the effects of fast
relaxation. Finally, our conclusions are presented in Sec. V.

II. FORMALISM

The quantum kinetic equation for the condensate density
matrix �̂ for the case of polariton condensation into one spa-
tially localized state can be written as

d�̂

dt
=

i

�
��̂,Ĥ� −

1

2 �
�=�1

�W�t��â�â�
†�̂ + �̂â�â�

† − 2â�
†�̂â��

+ �c�â�
† â��̂ + �̂â�

† â� − 2â��̂â�
†�� . �1�

Here â�
† and â� are the creation and annihilation operators of

polaritons with the pseudospin projection �= �1, where the
plus �minus� sign corresponds to the right �left� circular po-
larization.

The first term in the right-hand side of Eq. �1� describes
the coherent evolution of the density matrix under the action

of the condensate Hamiltonian Ĥ. In what follows, we ne-
glect the processes of virtual excitation of polaritons to the
other orbital states, which can occur due to the polariton-
polariton interaction, assuming the excited states to be far
away in energy compared to the value of on-site interaction

V̂. This approximation is valid, in particular, for localized
condensates in planar microcavities and for condensates in
pillar microcavities. The condensate Hamiltonian can be
written as

Ĥ = Ĥ0 + V̂ , �2a�

Ĥ0 = −
1

2
���

���

C���â�
† â��, �2b�

V̂ =
1

2 �
�=�1

��1â�
† â�

† â�â� + �2â�
† â−�

† â�â−�� . �2c�

Here the first term Ĥ0 describes possible polarization split-
ting of the single-polariton states, with � being the splitting
frequency. The splitting matrix C��� can be written as

C = � cz cx − icy

cx + icy − cz
	 , �3�

so that the matrix elements of C define the unit three-
dimensional �3D� vector c. For example, if the splitting of
the condensate is because of an external magnetic field ap-
plied along z direction, cz=1 and cx=cy =0. If there is no
Zeeman splitting, cz=0 and the vector c defines the linear
polarization splitting of the condensate in the xy plane,
which may be caused by the polarization splitting of exciton
or photon modes forming the exciton polariton.

The polariton-polariton interaction V̂ is characterized by
two constants �1,2. It should be noted that these interaction
constants are inversely proportional to the localization area
of the condensate A. The localization area is found from the
orbital wave function 	�r� of the condensate according to
the relation

1

A
=
 d2r�	�r��4. �4�

The interaction constant for polaritons with the same pseu-
dospin � can be estimated as �1�EbaB

2 /A, where aB is the
exciton Bohr radius and Eb is the exciton binding energy.24

One expects a weak attraction between the polaritons with
opposite pseudospins,25 so that �2
0. The exact value of
this parameter depends strongly on the number of quantum
wells in the microcavity, their separation, and the detuning
between the exciton and photon frequencies that define the
exchange scattering of two polaritons.

The two other terms in Eq. �1� describe processes of in-
coherent income of polaritons into the condensate and the
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processes of polariton escape from the condensate. The in-
come rate W�t� is time dependent for the case of pulsed
excitation and its value will be defined later in this section.
The outcome rate of polaritons is mainly related to the finite
transparency of the distributed Bragg mirrors of the micro-
cavity and, therefore, can be described by a time-
independent constant �c=1 /�c, where �c is the lifetime of
polaritons in the condensate �typically a few picoseconds�.

Quantum kinetic equations of type �1� for spinless polari-
tons have been studied previously for the cw excitation case,
i.e., for the time-independent income rate W �see Ref. 26�
and taking into account the time dependence of W but ne-
glecting polariton-polariton interactions.27,28 When both the
interactions and the time dependence of rates are present, an
analytical treatment of Eq. �1� is not feasible. To analyze the
kinetics of polariton condensation numerically, we first trans-
form Eq. �1� into the partial differential equation of the
Fokker-Planck type. This is achieved by the Glauber-
Sudarshan representation of the condensate density matrix29

�̂ =
 d4�P��,�����
��� . �5�

Here we denote by � two complex numbers ����+1 ,�−1�,
so that the integration is over two complex planes d4�
�d2�+1d2�−1, and the coherent states ��
 are defined as

��
 = �
�=�1

exp���â�
† − ��

� â���vac
 . �6�

After substitution of Eq. �5� into Eq. �1�, making use of the
relations

â���
��� = ����
��� , �7a�

â�
† ��
��� = ���

� +
�

���
	��
��� , �7b�

and integration by parts we obtain the equation for the dis-
tribution function P�� ,���. This equation reads as

�P
�t

= �
�
�−

1

2��
��

F����t�
�����P�

���

+ c.c.� +
W�t�

2

�2P
��� � ��

�

+
i

�
��1

������2��P�
���

+ �2

����−��2��P�
���

− c.c.�
−

i

2�
��1

�2���
2P�

���
2 + �2

�2����−�P�
��� � �−�

− c.c.�� , �8�

where

F����t� = �W�t� − �c�
��� + i�C���. �9�

The first three terms in Eq. �8� are of the usual Fokker-
Planck type. The first and the third terms containing the first
derivatives are the so-called drift terms, while the second
term describes the diffusion in the order-parameter � space.
The fourth term in Eq. �8� is anomalous. In spite of its simi-
larity to the diffusion term, it is characterized by negative
diffusion coefficients. This term describes pure quantum ki-
netics that does not have a classical analog.

For polariton condensates in semiconductor microcavities,
the polariton-polariton interaction starts to play a role only
for sufficiently large condensate occupation, namely, in the
region �1,2�n
��c. This implies a large average occupation
of the condensate �n
�1, for typical values of ��1,2�
�0.1 meV and �c�1 ps−1. For large occupations, the ki-
netics induced by the polariton-polariton interaction becomes
semiclassical and the last term in Eq. �8� can be neglected.
This term is small compared to the third one by the factor of
�n
−1. In what follows, we will assume this limit and will
omit the last term in Eq. �8�. We note that neglecting this
term is equivalent to the Gross-Pitaevskii approximation.

In the case of pulsed excitation, the initial condition for
Eq. �8� is P=
4��� before the arrival of the excitation pulse,
which implies the absence of polaritons in the condensate.
The solution to Eq. �8� then gives the distribution function to
calculate the statistical averages over many pulses. During
each pulse, the evolution of the order parameter ���t� is ran-
dom and can be described by a stochastic Langevin-type
equation. The Langevin stochastic approach will be more
convenient for us, and the Langevin equation that is
equivalent30 to Eq. �8� with the omitted last term is

d��

dt
=

1

2
�W�t� − �c��� + ���t� −

i

�


H

��

� . �10�

Here the first term describes evolution of the order param-
eter due to the pump and decay, the second term is the noise
defined below that leads to the diffusive evolution of ��

� ,
and, finally, the third term appears due to the combined effect
of the ground-state splitting and polariton-polariton interac-
tion. This last term in the right-hand side of Eq. �10� has the
same form as in the Gross-Pitaevskii equation, and we have
written it as the functional derivative of the effective Hamil-
tonian function H of the order parameter. This function can
be found from the condensate Hamiltonian �1� by replacing
the creation and annihilation operators â�

† and â� with ��
� and

��, respectively,

H = −
1

2
���

���

C�����
���� +

1

2�
�

��1����4 + �2����2��−��2� .

�11�

The total intensity of the white complex noise ���t� is given
by the income rate of polaritons into the condensate W�t� that
plays the role of the diffusion coefficient in the Fokker-
Planck equation. The correlators of the noise are

����t�����t��
 = 0, �12a�

����t����
� �t��
 =

1

2
W�t�
���
�t − t�� . �12b�

This noise is responsible for the phase and polarization fluc-
tuations in the ground state of the polariton system both be-
low and above the condensation threshold.

It should be noted that the amplitude of the noise depends
only on the value of income rate W�t�. The outcome rate of
polaritons from the condensate given in our case by �c does
not affect the magnitude of the noise. Physically, it happens
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because the escape of particles from the condensate does not
change the condensate coherence.31 Mathematically, the
noise term in the Langevin equation �10� appears from the
diffusion �second� term in the Fokker-Planck equation �8�.
The easiest way to relate these terms is to consider the case
of low condensate occupations ������1�, where only the dif-
fusion term and the noise term can be kept in the Fokker-
Planck and the Langevin equations, respectively. The ampli-
tude of the noise can be then found by the comparison of the
time dependence of the average number of polaritons.

In general, the income rate W�t� should be found by solv-
ing the semiclassical Boltzmann equation for the polariton
relaxation into the condensate.12 In what follows, however,
we adopt a simple model15 considering all the polaritons that
are not in the condensate as a single incoherent reservoir.
The reservoir occupation number Nr�t� satisfies the kinetic
equation

dNr

dt
= − �rNr − W�t��n�t� + 1� + P�t� , �13�

where P�t� is the incoherent pump rate, �r
−1 is the lifetime of

polaritons in the reservoir �usually �r��c�, and n�t�
= ��+1�t��2+ ��−1�t��2 is the instantaneous condensate occupa-
tion. The exact dependence of the income rate W�t� on Nr is
defined by the relaxation mechanism. In the simplest case of
polariton-phonon relaxation, they are proportional to each
other, W�t�=rNr�t�.

In the case of very short pulsed excitation, with pulse
duration much less then �c

−1, the pump is reduced to the
initial condition Nr�0�=�P�t�dt for the reservoir concentra-
tion. Equation �13� with P=0 is then solved simultaneously
with Eq. �10� considering that the condensate is not initially
populated, i.e., ���t=0�=0. These equations were solved nu-
merically using a �fifth-order� Adams-Bashforth-Moulton
predictor-corrector method.32 The results are presented in the
next section.

III. FORMATION AND DYNAMICS OF THE ORDER
PARAMETER

The complex order parameter of the condensate ���t� can-
not be observed directly in a photoluminescence �PL� experi-
ment. On the other hand, the polarization resolved PL gives
access to the components of the condensate pseudospin
�Stokes� vector,

Sx = �1/2���−1
� �+1 + �+1

� �−1� , �14a�

Sy = �i/2���−1
� �+1 − �+1

� �−1� , �14b�

Sz = �1/2����+1�2 − ��−1�2� . �14c�

Note that the condensate occupation n can be calculated from

n2 = 4�Sx
2 + Sy

2 + Sz
2� . �15�

Averaged values and statistics of different experimentally ob-
servable quantities are presented in this section. In what fol-
lows, we will be interested mostly in time-integrated quanti-
ties, which will be denoted by a bar, e.g., ���dt=��. The

averaging over multiple pulses �i.e., over realizations of
noise� will be denoted by angular brackets as in Eq. �11�.

From the definition, the time-averaged value of the pseu-
dospin S provides direct information about the order param-
eter of the condensate �except for the phase�. It should be
noted that fluctuations in the direction of the vector S appear
due to the same physical reasons as fluctuations of the con-
densate phase, namely, due to the income of polaritons into
the condensate with random polarizations and phases. There-
fore, suppression of fluctuations of S indicates suppression of
fluctuations of the phase of the condensate as well and mani-
fests in the buildup of the order parameter.

When describing experiments on polariton Bose-Einstein
condensation in microcavities, one may be able to neglect
the effects of polariton-polariton interactions and/or polariza-
tion splitting of the ground state of the condensate depending
on the sample, geometry of the experiment, and pumping
intensity. The polarization splitting typically depends on the
position of the excitation spot and the polariton-polariton
interaction decreases with the increase in the condensate lo-
calization radius �for constant occupation number of the con-
densate�. For this reason, in what follows, we present first the
results obtained neglecting both these effects �i.e., setting
H=0 in Eq. �10��, then we include the effect of polariton-
polariton interactions, and finally we study the role of polar-
ization splitting. In numerical calculations, we used the pa-
rameters �c=0.5 ps−1, �r /�c=0.01, r=10−4 ps−1, and, when
the polariton-polariton interaction is taken into account, �1
=1.8 �eV and �2 /�1=−0.1 �see Ref. 33�.

A. Noninteracting BEC without polarization splitting

To evidence the order-parameter formation, it is conve-
nient to study the total polarization degree of the condensate
�TPDC� defined as

� =
2

n̄
��Sx�2 + �Sy�2 + �Sz�2�1/2. �16�

The TPDC changes from 0 for a chaotic state to 1 for the
case of a well-defined order parameter with suppressed fluc-
tuations in time. It can be calculated numerically for different
realizations of the noise as Fig. 1 shows. One can see that the
solutions to Eqs. �10� and �13� exhibit a well-pronounced
threshold behavior. The dynamical threshold27 is defined by
the balance of the polariton income and outcome rates for the
condensate W�0�=rNr�0�=�c, so that the threshold pump in-
tensity is given by �Pthdt=�c /r.

Below threshold, the average occupation of the conden-
sate is less than unity �see Fig. 2� and the order parameter
fluctuates extensively during the reservoir lifetime �r

−1,
which defines the duration of the PL signal in this case. The
pseudospin also fluctuates strongly both in amplitude and
direction, so that the TPDC is close to zero. Because of the
finite duration of the PL signal �also given by �r

−1�, the
TPDC is not averaged to zero exactly, and it can be shown
that ��
���r /�c�1/2 for �r��c and P� Pth.

Above threshold, the condensate is formed during the for-
mation time tf, such that W�t���c for 0
 t� tf, and disap-
pears afterward on the scale of �c

−1. This leads to a drastic
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increase in the condensate occupancy and narrowing of the
emission peak �see Fig. 2�. At the same time, there is a strong
increase in the total polarization degree of the condensate.
The TPDC reaches unity, as the dashed curve in Fig. 1
shows. The fluctuations of the order parameter become fully
suppressed for P� Pth, so that apparently the fluctuations of
� are most pronounced in the vicinity of the threshold. It
should be noted that while the buildup of TPDC indicates the
formation of an order parameter for each excitation pulse, the
values of the order parameter and the corresponding values
of pseudospin change randomly from pulse to pulse.

Formation of the coherent polariton state at P� Pth can be
observed also by measuring the second-order coherence in a
Hanbury-Brown and Twiss setup.7,8 The second-order coher-
ence parameter g�2��0�,

g�2��0� =
�n2

�n
2 , �17�

is also shown in Fig. 1. Note that in contrast to the TPDC,
g�2��0� is not a direct measure of the order parameter, while

its power dependence is sensitive to the buildup of the order
parameter. The increase in the pumping power brings the
polariton condensate from the thermal �chaotic� state with
g�2��0�=3 /2 for P� Pth �Ref. 34� to the coherent state for
P� Pth, where the fluctuations are suppressed and the order
parameter is well defined for each pulse.

B. Effects of polariton-polariton interactions

Strong polariton-polariton interactions modify drastically
the dependence of the TPDC on the pump, as it is shown in
Fig. 3. They induce a substantial increase in fluctuations of
the polarization degree. Another important effect of
polariton-polariton interactions is the nonuniform distribu-
tion of the total polarization degree for P� Pth. Apart from
strong fluctuations of the polarization degree from 0 to 1, its
distribution exhibits sharp and approximately equidistant
peaks that appear far above threshold, as shown in Fig. 4.
The origin of these peaks can be understood if one examines
the condensate polariton distribution function in pseudospin
space. This distribution function is shown in Fig. 5 for four
values of the pump power.
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FIG. 1. �Color online� The total polarization degree � of a po-
lariton condensate as a function of pump intensity for the case of
noninteracting polaritons. Dots show the random values of � for
different pulses, while the average ��
 is shown by the dashed line.
The solid line shows the second-order coherence parameter �see
text�.
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FIG. 2. �Color online� The time dependence of the average con-
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One can see that the in-plane component of pseudospin
�Sx

2+Sy
2�1/2 is strongly suppressed for several values of Sz �see

Fig. 5�d� for P=3Pth�. This happens as a result of the spin
anisotropy of polariton-polariton interactions. This aniso-
tropy produces the self-induced Larmor precession17 of the
pseudospin vector around the ẑ axis. The frequency of this
precession is proportional to Sz �see the Appendix for more
details�. For a fixed n, the in-plane component of pseudospin
is averaged to zero for the values of Sz that give a full 2�
rotation. In reality, the condensate occupation is not fixed
and n also fluctuates, so that the in-plane pseudospin never
averages to zero exactly. Nevertheless, this effect gives rise
to a sequence of “Larmor rings” seen at strong pump inten-
sity. An important consequence of the suppression of the
average in-plane component of the pseudospin is the nonmo-
notonous dependence of the TPDC on the pump intensity.
The TPDC exhibits a peak placed close to the threshold
value of the pump. The nonmonotonic behavior of the TPDC
as a function of pump intensity with a characteristic peak
near the threshold pump intensity has been observed experi-
mentally in GaN-based microcavities.11

Note that the polariton-polariton interactions that caused a
decrease in the average polarization degree for higher pump
powers do not prevent g�2� from approaching 1, and the in-
teractions have no effect on the second-order coherence �cf.
Figs. 1 and 3�. This is because of the definition of the
second-order coherence parameter at an instantaneous value
of time �see Eq. �17��. Experimentally, g�2��0� is measured by
a Hanbury-Brown and Twiss setup, which has a temporal
resolution of about 100 ps, typically. Both below and much
above the stimulation threshold, this value exceeds the first-
order coherence time of the condensate,8 which is why the
measured value of g�2��0� always remains close to zero.
When corrected accounting for the nonmonotonic depen-
dence of the first-order coherence time on the pumping
power g�2��0� exhibits the decrease above threshold7 fol-
lowed in a CdTe microcavity by subsequent increase with the

pumping power.8 The decrease of g�2��0� with the pumping
power is reproduced by the Wigner model of Wouters and
Savona18 and by our previous28 and present model. The non-
monotonic behavior above threshold could reflect the multi-
mode character of emission of the cavity and fluctuations of
the condensate energy due to fluctuations of its occupation
number n�t� within the time resolution of the experimental
setup. The effect of fluctuations of the condensate occupation
on the second-order coherence above threshold has been
studied in detail experimentally and theoretically in Ref. 35.
This effect can be described by our theory as well but is
beyond the scope of this paper.

C. Combined effects of polarization splitting and interactions

The presence of polarization splitting described by the
first term in the Hamiltonian �11� has a remarkable effect on
the pseudospin distribution function, as shown in Fig. 6. The
vector c that defines the splitting matrix �3� has been chosen
along the ŷ direction. One can see that the Larmor rings
appearing at high pump become deformed and are accompa-
nied by pinning of linear polarization to the ŷ axis.

The presence of pinning seen in Fig. 6 is somewhat un-
expected. Indeed, the pseudospin vector is initially formed
with some random orientation. Then, in the absence of
polariton-polariton interactions and relaxation, the pseu-
dospin should simply precess around the ŷ axis, and, since
this precession conserves the y component of the pseudospin
vector, the distribution function should remain symmetric,
i.e., without any pinning. It turns out that pinning is a com-
bined effect of polarization splitting and polariton interac-
tions. The features of the precession in this case are pre-
sented in the Appendix. Physically, the appearance of
pinning can be understood from energy conservation. As-
sume that initially the pseudospin vector is randomly ori-
ented in the equatorial plane. For this orientation, the
polariton-polariton repulsion is minimized. Polarization
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FIG. 5. �Color online� The distribution function in normalized
pseudospin space s=2S / n̄ for different values of the excitation
pump in the case of interacting polaritons. Above the threshold, the
formation of the Larmor rings is seen.
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FIG. 6. �Color online� The distribution function in normalized
pseudospin space s=2S / n̄ in the case of polarization splitting char-
acterized by c � ŷ with the splitting energy ��=0.08 meV.
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splitting will rotate the pseudospin vector and move it away
from the equator. This results in an increase in the polariton
repulsion energy and this increase should be compensated by
a decrease in the splitting energy. Therefore, the angle be-
tween the vectors c and S will decrease, so that pinning
appears.36 It is also shown in the Appendix that for high
enough polariton-polariton interaction, one still observes the
self-induced Larmor precession along with the deformed pre-
cession around the pinning c direction. The axis of self-
induced Larmor precession, however, becomes inclined to
the direction opposite to the pinning axis. This explains the
deformation of the Larmor rings in the −ŷ direction, as it is
seen in Fig. 6.

IV. RELAXATION OF THE ORDER PARAMETER

The results obtained in the previous section are valid if
the lifetime of the condensate �c

−1, which defines the duration
of the luminescence signal far above the threshold, is short
compared to the typical relaxation times of the order param-
eter. In this section, we show that fast relaxation of the order
parameter modifies qualitatively the polarization properties
of the polariton condensate.

The relaxation can be incorporated phenomenologically in
our Eq. �10� by adding a relaxation term R� to its right-hand
side. In general, this should be accompanied by an additional
noise term due to the fluctuation-dissipation theorem, but this
additional noise is small compared to the income noise and
can be neglected if the lattice temperature is not too high. In
the simplest case, the so-called model A also referred to as
the Landau-Khalatnikov or the Onsager model,37 this relax-
ation term reads as

R�
LK = − �


H

��

� , �18�

where the parameter � defines the relaxation rate. This term
favors relaxation of the order parameter to a state with Sz
=0, i.e., to a linearly polarized condensate, since the
polariton-polariton repulsion energy is minimized for the lin-
ear polarization.

The distribution functions of polaritons normalized in the
pseudospin space calculated for different pump intensities in
the absence of polarization splitting ��=0� are shown in Fig.
7. One can see that the “Larmor rings” vanish and the circu-
lar polarization of the condensate is rapidly lost as the pump
intensity increases. The distribution of polariton condensates
in pseudospin space calculated by repeating the numerical
experiment with different noise realizations changes from a
sphere to a torus and approaches a flat ring shape as the
pump power is increased further. As a result, the condensate
develops a strong spontaneous linear polarization far above
the condensation threshold. If the polarization splitting of the
ground state is present, the direction of resulting linear po-
larization becomes well defined.

It should be noted that the relaxation term �18� does not
conserve the number of polaritons in the condensate. This
way the condensate depletion and leakage of polaritons from
the condensate are implied by the model �18�. In the case
when the condensate occupation is not very high and only

the term linear in �� is kept in Eq. �18�, the Landau-
Khalatnikov relaxation is reduced to

R�
lin =

1

2
��

��

C������. �19�

It is easily seen that this type of relaxation is equivalent to
the assumption of an anisotropy in the transparency of the
distributed Bragg mirrors of the microcavity, i.e., it is
equivalent to the presence of polarization dependence of the
polariton lifetime. In particular, the lifetime is �c=1 / ��c
−�� for polarization along c, and �c=1 / ��c+�� for the per-
pendicular linear polarization. Clearly, this model makes
sense only when the relaxation rate �
�c.

Probably, the simplest relaxation model that conserves the
number of polaritons in the condensate is

R�
cst = −

1

2
�R������, �20�

R��� = �c · S�
��� − SC���. �21�

Note that this type of relaxation is reflected in the term
−��S� �S�c�� in the equation for the pseudospin velocity
dS /dt. If we denote � as the angle between S and c, then this
angle relaxes according to the equation d� /dt=−�S sin �.
We will present elsewhere38 the results for the case of
occupation-conserving relaxation along with the results
about junctions of several polariton BECs and formation of
spatial coherence, where the conservation of the total number
of particles plays a crucial role.

V. CONCLUSIONS

We have described theoretically the spontaneous buildup
of the vector order parameter in the course of polariton BEC.
The buildup of the order parameter manifests itself in the
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FIG. 7. �Color online� The effect of relaxation of the order pa-
rameter on the distribution function in normalized pseudospin space
s=2S / n̄. Contrary to the case without relaxation �Fig. 5�, a linear
polarization is formed for strong pump above threshold. The relax-
ation parameter �=1 meV−1 ps−1.
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formation of the stochastic vector polarization of the conden-
sate. This polarization is correlated with the second-order
coherence of the condensate. We have considered the regime
of pulsed excitation either neglecting or allowing for the po-
lariton polarization �spin� relaxation in the condensate �Figs.
5 and 7, respectively�. We also considered the effects of po-
larization splitting of the polariton state that results in linear
polarization pinning. If the spin relaxation is inhibited, we
predict a strong circular polarization of the condensate hav-
ing an oscillating statistical distribution. If the spin relaxation
is efficient, the condensate is expected to acquire a linear
polarization.
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APPENDIX: PSEUDOSPIN DYNAMICS

Here we discuss the dynamics of the pseudospin vector S
in the region of high excitation densities, i.e., for the pump
far above the stimulation threshold.

It is necessary to point out that, in general, there is no
closed equation for the pseudospin vector. Such an equation
cannot be obtained from Eq. �10� and definitions �14a�–�14c�
because of the noise term in Eq. �10� that cannot be trans-
formed into a term depending solely on S. Physically, the
absence of a closed equation for S is related to the fact that
the pseudospin vector misses the information about the phase
of the condensate and therefore does not provide the com-
plete description of the system.

However, at high pump densities, i.e., far above the
threshold, the relative fluctuations of the order parameter are
small and the noise term can be omitted. Also, if we are
interested in the dynamics of the order parameter on time
scales where the condensate occupation does not change sig-
nificantly, it is possible to neglect the �first� pump-decay term
in Eq. �10� as well. Then the order parameter evolves accord-
ing to the Gross-Pitaevskii equation

i�
d��

dt
=


H

��

�

= −
1

2
���

��

C������ + ��1����2�� + �2��−��2��� .

�A1�

This equation can be transformed to the equation for the
pseudospin vector �14a�–�14c�. Namely,

dS

dt
= ��S � c� + 2

��1 − �2�
�

�ẑ · S��ẑ � S� , �A2�

where we used the definition of the 3D vector c from Eq. �3�.
For low condensate occupation, the nonlinear interaction

term can be neglected and this equation describes the preces-
sion of the pseudospin vector S around the pinning direction

c. On the contrary, for large condensate occupation n the first
term in Eq. �A2� can be neglected and the self-induced Lar-
mor precession around the ẑ axis appears due to the
polariton-polariton interaction. The angular velocity of this
precession depends on the value of Sz, which is the reason
for the appearance of the Larmor rings discussed in Sec. III.

In the general case, Eq. �A2� also describes a periodic
motion of the pseudospin. The value of �S� is conserved and
the end of the vector S draws closed trajectories on the
Poincaré sphere. To describe the experimentally relevant
case of linearly polarized pinning, we choose the pining di-
rection c � ŷ, as in Sec. III C. Then, introducing the unit vec-
tor s=2S /n, we have

1

�

dsx

dt
= − sz − �szsy , �A3a�

1

�

dsy

dt
= �szsx, �A3b�

1

�

dsz

dt
= sx, �A3c�

where

� =
��1 − �2�n

��
. �A4�

The solutions to Eq. �A2� can be expressed in terms of Jaco-
bi’s elliptic functions,

sz = Acn��t,k2� , �A5a�

sy = a + �1/2��sz
2, �A5b�

sy

sz
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0.5
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FIG. 8. �Color online� Showing the projections on the yz plane
of several trajectories drawn by the end of the pseudospin vector on
the Poincaré sphere for the case of combined precession discussed
in the Appendix. The trajectories are defined by the parameter a
ranging from −2.7 to 0.9 in increments of 0.3. The interaction pa-
rameter �=6.
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sx = − �Asn��t,k2�dn��t,k2� , �A5c�

where the frequency �, the elliptic modulus k, and the am-
plitude A can be found from

��/��4 = 1 + 2a� + �2, �A6�

A2 =
2�1 − a2�

�1 + a�� + �1 + 2a� + �2
, �A7�

k2 =
1

2�1 −
�1 + a��

�1 + 2a� + �2� . �A8�

The number a in above equations is a free parameter that is
defined by the initial condition. For the weak-interaction
case, when 0
�
1, one has −1
a
1 and all the pseu-
dospin trajectories cross the equatorial plane of the Poincaré
sphere, so that one has a deformed precession around c axis.
When ��1, the parameter a can be smaller than −1, namely,
−�1+�2� /2�
a
1. The trajectories for a
−1 never reach
the equator of the Poincaré sphere and they describe the pre-
cession analogous to the self-induced Larmor precession.39

The precession axis, however, is inclined with respect to the
ẑ direction �see Fig. 8�.
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